SYNTHESIS AND STEREOCHEMISTRY OF 3,6-EPOXY-5-HYDROXY-5,6-DIHYDRO- β -IONOL, A NOVEL FLAVOR CONSTITUENT OF SUIFU TABACCO

Tetsuya KATO, Hisao KONDO, Yukishige KITANO,
Go HATA, * and Yoshikazu TAKAGI **

Basic Research Laboratries, Toray Industries, Inc., Tebiro, Kamakura 248

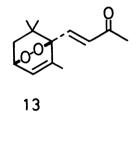
*Soda Aromatic Co., Ltd., Funakata, Noda 270-02

**Central Research Institute, The Japan Tabacco and Salt Public Corporation,

Umegaoka 6-2, Midori-ku, Yokohama 227

 (\pm) -3,6-Epoxy-5-hydroxy-5,6-dihydro- β -ionol was synthesized from β -ionone <u>via</u> 3,6-dihydroxy- α -ionone and its structure including the relative configurations was established as (\pm) -2 β ,5 β -epoxy-2 α -[3 α -hydroxy-1(\underline{E})-butenyl]-1 β ,3,3-trimethylcyclohexan-1 α -ol by X-ray analysis.

A novel flavor substance, (-)-3,6-epoxy-5-hydroxy-5,6-dihydro- β -ionol, was initially found in the volatile fraction of air-cured Suifu tabacco, a Japanese domestic one. Recently Enzell et al. have also isolated the compound 1 from sun-cured Greek tabacco and established the relative configurations at C-3, C-5, and C-6 as 1.2 The configuration at the remaining asymmetric center, C-9, is unsettled. In relation to our own interest in confirming the structure 1.2, especially the unknown configuration at C-9, and evaluating the flavor properties of this material, its synthesis has been undertaken. Herein we wish to report the stereoselective synthesis and the stereochemistry of 1.


The epoxy ketone $\underline{3}$ was prepared in three steps from β -ionone $\underline{\text{via}}$ dehydroionone $\underline{2}$. $\underline{3}$) Hydrolysis of $\underline{3}^4$) in aqueous dioxane at 30 °C afforded the $\underline{\text{trans-}}$ 4 and $\underline{\text{cis-diols 5}}$ in a ratio 85:15. The minor isomer was assigned to the $\underline{\text{cis-diol 5}}^5$ by a comparison with the authentic sample obtained by photosensitized oxygenation $\underline{6}$) of

dehydroionone $\underline{2}$, followed by treatment of the resulting peroxide $\underline{13}$ with thiourea. The $\underline{\text{trans-}}$ $\underline{4}$ and $\underline{\text{cis-diols}}$ $\underline{5}$ were oxidized respectively with Jones reagent to afford the same bisenone $\underline{6}$. This defines the relative configurations at C-3 of the diols as 4 and 5.

The <u>trans</u>-diol <u>4</u> was epoxidized with <u>m</u>-chloroperbenzoic acid in dichloromethane at 25 °C to afford the crystalline diol epoxide $\underline{7}$ in 70% yield. Treatment of $\underline{7}$ with <u>p</u>-toluenesulfonyl chloride in dry pyridine at 0 °C yielded the tosylate $\underline{8}$ which, upon treatment with sodium hydride in tetrahydrofuran at 25 °C, was converted into the epoxy ether $\underline{9}$ in 97% yield. The ¹H-NMR signals of the <u>gem</u>-dimethyl protons appear at 0.81 and 1.31 ppm in $\underline{9}$. The lower field signal was assigned to the <u>endo</u>-methyl protons and the difference in the chemical shifts of the <u>gem</u>-dimethyl protons is ascribed to a deshielding effect of the <u>endo</u>-epoxide ring. Reduction of $\underline{9}$ with lithium aluminium hydride in tetrahydrofuran under reflux afforded the diol ethers $\underline{10}$ and $\underline{11}$ in 16 and 18% yields respectively. The diol ether $\underline{10}$ was proved to be identical with the natural 3,6-epoxy-5-hydroxy-5,6-dihydro- β -ionol by TLC, IR, $\frac{1}{1}$ H and $\frac{13}{1}$ C-NMR, and mass spectral comparison.

In order to establish the relative configuration at C-9 of $\underline{10}$, the diol ether $\underline{10}$ was converted into the crystalline p-nitrobenzoate $\underline{12}$ which was subjected to a single-crystal X-ray diffraction analysis. Crystal data are as follows: Triclinic (from hexane), space group $P\overline{1}$; $\underline{a}=11.618(1)$, $\underline{b}=12.373(2)$, $\underline{c}=7.934(1)$ Å; $\alpha=108.43(1)$, $\beta=108.89(1)$, $\gamma=95.95(1)$ °; U=996.51 ų; Z=2, $D_{\underline{x}}=1.252$ g cm⁻³. A total 2333 independent non-zero reflections are measured on a Rigakudenki four circle diffractometer using graphite-monochromated Cu K α radiation. The structure was solved by the direct method 10) using program MULTAN 78 and was refined by the block diagonal least-squares method assuming the anisotropic thermal vibrations. The final R-factor was 9.6% excluding hydrogen atoms. Figure 1 shows a computer-generated perspective drawing of the molecular structure of $\underline{12}$. This defines the relative configurations of the natural 3,6-epoxy-5-hydroxy-5,6-dihydro- β -ionol as $(\pm)-2\beta$,5 β -epoxy-2 α -[3 α -hydroxy-1(E)-buteny1]-1 β ,3,3-trimethylcyclohexan-1 α -ol.

Characterizations of the products are as follows. ($\underline{4}$): mp 116-117 °C; IR (nujol) 3300, 1684, 1617, 988 cm⁻¹; 1 H-NMR¹¹) δ 0.92 (s, 3H), 1.04 (s, 3H), 1.63 (t, J = 2 Hz, 3H), 1.50-2.10 (m, 4H, 2H disappeared on addition of D₂O),

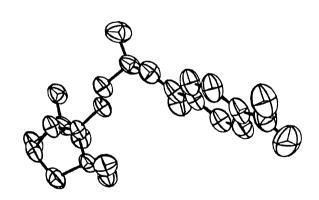


Fig. 1

2.28 (s, 3H), 4.30 (m, 1H), 5.63 (m, 1H), 6.33 (d, J = 16 Hz, 1H), 6.84 (d, J = 16 Hz, 1H); MS m/e 224 (M⁺), 206, 108, 59, 43; MW¹²⁾ 224.1450. (7): mp 138-139 °C; IR (nujol) 3450, 1675, 1648, 990 cm⁻¹; 1 H-NMR¹¹⁾ δ 0.79 (s, 3H), 0.97 (s, 3H), 1.30 (s, 3H), 1.36-1.80 (m, 4H, 2H disappeared on addition of D₂O), 2.32 (s, 3H), 3.28 (d, J = 3 Hz, 1H), 4.17 (m, 1H), 6.37 (d, J = 16 Hz, 1H), 7.04 (d, J = 16 Hz, 1H); MS m/e 241 (M⁺+ 1), 222, 179, 125, 43; MW¹²⁾ 241.1405 (M⁺+ 1). (8): IR (nujol) 3480, 1679, 1655, 1592, 1172, 928 cm⁻¹. (9): IR (neat) 1675, 1628, 980, 941, 868 cm⁻¹; 1 H-NMR¹¹⁾ δ 0.81 (s, 3H), 1.12-1.92 (m, 2H), 1.31 (s, 3H), 1.42 (s, 3H), 2.29 (s, 3H), 3.94 (d, J = 3 Hz, 1H), 4.44 (dd, J = 3 and 6 Hz, 1H), 6.41 (d, J = 16 Hz, 1H), 6.79 (d, J = 16 Hz, 1H); MS m/e 222 (M⁺), 207, 125, 98, 43; MW¹²⁾ 222.1260. (12): mp 96-97 °C; IR (CHC1₃) 1722, 1605, 1525, 1350, 1270, 1018, 963 cm⁻¹; 1 H-NMR¹¹⁾ δ 0.89 (s, 3H), 1.17 (s, 3H), 1.41 (s, 3H), 1.50 (d, J = 6 Hz, 3H), 1.58-2.20 (m, 5H, 1H disappeared on addition of D₂O), 4.38 (t, J = 6 Hz, 1H), 5.5-5.8 (m, 1H), 5.83-5.98 (m, 2H), 8.24 (A₂B₂, 4H); MS m/e 376 (M⁺+ 1), 358, 301, 208, 150, 43; MW¹²⁾ 376.1738 (M⁺+ 1).

References and Notes

- 1) Y. Takagi, T. Fujimori, H. Kaneko, T. Fukuzumi, and M. Noguchi, 22nd Symposium on the Chemistry of Terpenes, Essential Oils and Aromatics, Yokohama, Japan, Oct. 1978, Abstr. No. A23.
- D. Behr, I. Wahlberg, T. Nishida, and C. R. Enzell, Acta Chem. Scand., B33, 701 (1979).
- 3) J. A. Findlay and W. D. MacKay, Can. J. Chem., 49, 2369 (1971).
- 4) W. Cocker, K. J. Crowley, and K. Srinivason, J. Chem. Soc., Perkin Trans. 1, 1973, 2485.
- 5) M. Koreeda, G. Weiss, and K. Nakanishi, J. Am. Chem. Soc., 95, 239 (1973).
- 6) M. M. Canet, J. C. Mani, J. R. Dalle, and J. L. Olive, Bull. Soc. Chem. Fr., 3874 (1966).
- 7) K. H. Schulte-Elte, M. Gadola, and G. Ohloff, Helv. Chim. Acta, $\underline{56}$, 2028 (1973).
- 8) K. Tori, K. Kitahonoki, T. Takano, H. Tanida, and Y. Tsuji, Tetrahedron Lett., 1964, 559.
- 9) N. M. Yoon and H. C. Brown, J. Am. Chem. Soc., 90, 2927 (1968).
- 10) G. Germain, P. Main, and M. M. Woolfson, Acta Cryst., A27, 368 (1971).
- 11) All H-NMR spectra were determined in CDCl₃.
- 12) Determined by high resolution mass spectroscopy.

(Received April 8, 1980)